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ABSTRACT 
Breast cancer is among the leading cause of mortality among women in developing as well as under-developing 

countries. The detection and classification of breast cancer in the early stages of its develop-ment may allow 

patients to have proper treatment. In this article, we proposed a novel deep learning framework for the 

detection and classification of breast cancer in breast cytology images using the con-cept of transfer learning. 

In general, deep learning architectures are modeled to be problem specific and is performed in isolation. 

Contrary to classical learning paradigms, which develop and yield in isolation, transfer learning is aimed to 

utilize the gained knowledge during the solution of one problem into an-other related problem. In the proposed 

framework, features from images are extracted using pre-trained CNN architectures, namely, GoogLeNet, 

Visual Geometry Group Network (VGGNet) and Residual Networks (ResNet), which are fed into a fully 

connected layer for classification of malignant and benign cells using average pooling classification. To 

evaluate the performance of the proposed framework, experiments are performed on standard benchmark data 

sets. It has been observed that the proposed framework outclass all the other deep learning architectures in 

terms of accuracy in detection and classification of breast tumor in cytology images. 
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I. INTRODUCTION 
In biomedical research, analysis of microscopic images repre-senting different human organs and 

tissues play an important role in the understanding of different biological activities. Among mi-croscopic image 

examination assignments, classification of images (tissues, organs etc) is one of great significance. Different 

appli-cations identified with microscopic image classification have been developed. Breast cancer is the most 

common and a leading cause of death all over the world in women aged between 20 to 59 years [1]. If diagnosed 

in early stages, the survival rate from breast cancer may be increased up to 80% [2]. The two common diagnos-

ing methods used for breast cancer detection are mammography and biopsy. In mammography, breast images of 

a specific type are used to detect early cancer symptoms in women by the radiolo-gist. It has been observed that 

due to the use of mammography for cancer detection, the death ratio has decreased [3]. A biopsy is another well 

efficient and accurate diagnosis method for breast cancer detection. In this approach, a tissue sample from an 

affected region of the breast is analyzed under a microscope by a pathol-ogist for the detection and classification 

of the tumor. Currently, biopsy plays a vital role in breast cancer as well as in other types of cancer diagnosis 

[4]. Through biopsy, pathologist can determine two types of lesion: benign and malignant. The benign lesion is 

not cancerous; it is indeed the abnormalities in the epithelial cells, and most of these abnormalities are unable to 

become a source of breast cancer. The malignant or cancerous cells are those types of cells, which start divisions 

abnormally and grows irregularly. It is a very complex and challenging task to analyze the microscopic images 

manually due to the irregular appearance of benign and malignant cells [5,6] 

In the past few decades, numerous researchers have proposed different solutions for automated cells 

classifications for cancer de-tection in breast cytology images. In this regards, some researchers have worked on 

nuclei analysis by extracting features from nuclei to provide significant information for cell classification into 

benign and malignant [7]. Similarly, clustering based algorithms along with circular Hough Transform and 
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various statistical features are also exploited for nuclei segmentation and classification [8–10]. In the medical 

image analysis, algorithms for histopathological im-ages are developing rapidly but still, it is highly demanded 

to have an automatic system to get efficient and highly accurate re-sults [11–13]. Therefore, such types of 

techniques are required that gives the right direction towards qualitative products for diagnoses, to provide 

uniformity in the results during the observation process and improve the objectivity. The complex nature of 

tasks like pre-processing, segmentation, feature extraction, etc in classical ma-chine learning approaches 

degrades the performance of the system regarding efficiency and accuracy. 

To overcome the problems of traditional machine learning tech-niques, the concept of deep learning 

has been introduced to ex-tract the relevant information from the raw images and use it effi-ciently for 

classifications process [14,15]. In deep learning, features are not adjusted manually instead the learning is 

performed from data sets with the help of general-purpose learning approach [14]. In the last few years, deep 

learning based on Convolution Neural Network (CNN) has achieved great success in the field of biomedi-cal 

image analysis like detection of mitosis cells from microscopic images [16,17] tumor detection [18], 

segmentation of neural mem-branes [19] skin disease and its classification [20], detection and classification of 

immune cells [21] and quantization of mass in mammograms [22]. Although, the CNN application works very 

well on large data sets, yet on small data sets it fails to achieve sig-nificant gains. In order to achieve higher 

recognition accuracy and reduce the computational costs, the concept of transfer learning can be exploited to 

improve the performance of individual CNN ar-chitectures by combining their knowledge [23,24]. In this 

regards, the set of features is extracted from generic image data sets us-ing pre-trained deep CNN and then 

directly applied for domain specific and smaller data sets [25]. The concept of context based learning gives a 

new direction to transfer learning in which CNN is trained in two phases both for single and overlapping patches 

and performed very well in breast cancer detection and classifica-tion [26]. The combination of multiple CNN 

architecture boosts up the performance of transfer learning and may replace the use of traditional single model 

CNN architecture. Similarly, the combina-tion of ResNet50, InceptionV2 and InceptionV3 are pre-trained on 

ImageNet which produced a fast and accurate model for cell based image classification [27,28]. 

In the proposed framework, transfer learning has been ex-ploited to overcome the deficiencies in 

existing systems for the de-tection and classification of cancer tumor. The main contribution in this paper can be 

summarized in the following: 

• To provide a framework based on deep learning architecture for the detection and classification of breast 

cancer. 

• To analyze the concept of transfer learning on three different deep learning architectures. 

• To provide a comparative analysis of each deep learning ar-chitecture with respect to accuracy in the 

context of transfer learning. 

 

The rest of the paper is organized as follows: Section. 2 pro-vides a detailed analysis of the proposed 

approach which in-clude subsections like data pre-processing and data augmenta-tion, pre-trained CNN 

architectures and transfer learning. Similarly, Section. 3 discuss the experimental results obtained after apply-

ing the proposed approach along with its performance evaluation. Finally, Section. 4 gives the conclusion of the 

paper and provide future directions. 

 

II. PROPOSED METHOD 
In this section, the proposed framework based on CNN archi-tecture is explained for the detection and 

classification of malig-nant cells in breast cytology images. In the proposed framework different low level 

features are extracted separately by three well-known CNN architectures of GoogLeNet, VGGNet, and ResNet. 

The combined features are fed into a fully connected layer for the clas-sification task, as given in the block 

diagram shown in Fig. 1. The details about each step of the proposed architecture is given in the following 

subsections. 

 

2.1. Data pre-Processing and augmentation processing 

The pre-processing step is essential in tissue images to remove different types of noises. In the 

proposed approach, the micro-scopic H&E stain tissue images are normalized using the method proposed in 

[29]. To achieve higher performance in accuracy, CNN requires large data sets. Moreover, the performance of 

CNN deteri-orates with small data sets due to over-fitting. It means that the network performs very well on 

training data but under-perform on test data. In the proposed framework, data augmentation tech-nique is 

applied to increase the data set and reduce the over-fitting problems [30,31]. In the data augmentation method, 

the number of samples is increased by applying geometric transformations to the image data sets using simple 

image processing techniques. In this regards, the image data set is increased by color process-ing, 

transformation (translating, scaling, and rotation), flipping and noise perturbation. Since the microscopic images 
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are rotationally invariant, the pathologist can easily analyze the breast cancer mi-croscopic images from 

different angles without any variation in the diagnosis [32]. 

 

 

 

 

2.2. Pre-trained CNN architecture for feature extraction 

In the beginning, separate CNN architectures are used for fea-ture extraction, which are combined into 

a fully connected layer for classification tasks. The combined features may contain multi-ple features extracted 

from single descriptor, these features may represent the shape descriptor like circularity, roundness, com-

pactness, etc. In the proposed framework, three most recent and up-to-date deep CNN architectures: GoogLeNet 

[33], Visual Ge-ometry Group Network (VGGNet) [34] and Residual Networks (ResNet) [35] are adopted as a 

feature extractor for the classifica-tion of breast cancer in cytology images. These architectures are pre-trained 

for various generic image descriptors, followed by rel-evant feature extraction from microscopic images on the 

basis of transfer learning theory [36]. The basic structure of each adopted CNN architectures are described in the 

following sub-sections. 

 

2.2.1. Googlenet 

It is a small network consisting of three convolution layers, rec-tified linear operation layers, pooling 

layers, and two fully con-nected layers. Using the architecture of GoogLeNet, we proposed a model which 

combines various convolution filters of different sizes into a new single filter, which not only reduces the 

number of perimeters but also minimizes the computational complexity. The underlying architecture of 

GoogLeNet is illustrated in the Fig. 2. 

 

2.2.2. VGGNet 

VGGNet is similar to AlexNet except with additional convolution layers. VGGNet consists of 13 

convolution, rectification, pooling and 3 fully connected layers [34]. The convolution network uses 3 × 3 

windows size filter and 2 × 2 pooling network. VGGNet performs better as compared to AlexNet due to its 

simple architecture. The underlying architecture of VGGNet is illustrated in the Fig. 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Block Diagram of the Proposed Deep Learning Framework. 
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Fig. 2. Basic Architecture of GoogLeNet [33]. 

 

 
Fig. 3. Basic Architecture of VGGNet [34]. 

 

 
Fig. 4. Basic Architecture of ResNet [35]. 

 

 

2.2.3. Resnet 

ResNet is a very deep residual network and it achieves good re-sults in classification task on the 

ImageNet [37]. ResNet combined multiple sized convolution filters which manage the degradation problem and 
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reduces the training time that occurs due to its deep structures. The underlying architecture of ResNet is 

illustrated in the Fig. 4. 

 

2.3. Transfer learning 

In practices, large size of data is required to train a CNN from scratch but in some cases, it is very difficult to 

arrange a big data set of relevant problems. Contrary to an ideal situation, in most of the real world applications, 

it is not the case, or it is a complicated task to gain matching training and testing data. Therefore, the con-cept of 

transfer learning has been introduced. Transfer learning is one of the most well-known methods of machine 

learning which learned the background knowledge applied for solving one prob- lem and reused on the other 

relevant problems. Initially, the base network is trained for a specific task on their relevant data set and then 

transfer to the target task trained by target data set [38]. 

The transfer learning process can be divided into two main steps: selection of the pre-trained model, problem 

size and simi- larity. The selection of the pre-trained model is made on the basis 

 

  

 Table 1       

 

Magnification based Comparative Analysis of the Proposed Framework 

with other CNN Architec- 

 tures.       

       

 CNN Architectures 

Le

ns Magnification  

Average Classification 

Accuracies 

        

  

100

X 140X 200X 

500

X  

       

 GoogLeNet 

90.

4 93.7 95.3 94.6 93.5% 

 VGGNet 

90.

8 94.8 96.7 94.2 94.15% 

 ResNet 

91.

5 93.3 95.4 97.2 94.35% 

 

Proposed 

Framework 

96.

8 96.9 97.8 98.6 97.525% 

        

 

of the associated problem which is relevant to the target problem. If the size of the target data set is 

smaller (i.e., less then 1000 im-ages) and similar to the source training data set (medical data sets, hand-written 

character data sets, vehicles data sets or biometric related data sets etc.) then the chance of over fitting is high. 

Simi-larly, if the size of the target data is larger and similar to the source data sets then the chance of over fitting 

is low and it requires only the fine tuning of the pre-trained model. 

In the proposed framework, three CNN architectures (GoogLeNet, VGGNet, and ResNet) are used to 

share their prop-erties on transfer learning and fine-tuning. These three CNN architectures are trained by the 

sample images from ImageNet data set and transfer learning has been adopted. This makes the ar-chitecture 

capable of learning the generic features from other data sets without the need for new training. The number of 

features extracted independently from the respective CNN architecture is combined into the fully connected 

layer for classification of the malignant and benign cell using average pooling classification. 

 

III. EXPERIMENTAL RESULTS AND DISCUSSION 
3.1. Dataset 

To evaluate the performance of the proposed framework two breast microscopic image data sets are 

used: the first one is a stan-dard benchmark data set [39], and the other is developed locally at LRH hospital 

Peshawar, Pakistan. For both data sets, first aug-mentation technique is applied by scaling, rotation, translation 

and colors modeling to produce a total of 8000 images. In these 8000 images, 6000 images are used for training 

the architecture while 2000 images are used for testing the trained model. In both data sets, images are captured 

by microscope with various magnifica-tions (the enlargement process of images seen by microscopic lens 

known as lens magnification). In the proposed framework various magnified images (100X, 140X, 200X and 

500X) are used for accu-rate evaluation. During the execution of the proposed framework, 75% of data set is 
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used for training purpose while 25% of data set is used for testing the accuracy of the proposed architecture. 

More-over, to control the over-fitting issues, the initial stopping criteria is designed which is based on the 

performance validation, i.e., to stop the training process when the system shows no or less im-provement after 

1000 iterations. 

 

3.2. Results and analysis 

The proposed framework is trained on three different CNN ar-chitectures, i.e., GoogLeNet, VGGNet, 

and ResNet, individually and then transferred the learning data into combined features extrac-tion using transfer 

learning. The obtained results from single CNN is compared with combined features set along with different ex-

isting techniques. Table. 1 show the result of each architecture in-dividually in different magnification sizes as 

well as the proposed transfer learning approach. 

As shown in Table. 1, the GoogLeNet, VGGNet and ResNet archi-tecture individually gives average 

classification accuracy of 93.5%, 94.15%, and 94.35% respectively, while the proposed framework gives an 

accuracy of 97.525%. These results show that the proposed framework achieve high performance in terms of 

accuracy in de-tection and classification of breast cancer tumor as compared to the other three architectures. 

Moreover, during experimentation of the proposed approach, the data is splatted into training and 

testing data sets. The splat-ting is performed using three different procedures:90%-10%, 80%-20%, 70%-30%. 

The 90%-10% splatting means that 90% data is used for training while the rest of 10% is used for testing the 

CNN archi-tectures. A comparative analysis of the proposed approach based on data splatting is performed with 

other CNN architectures given in Table. 2. In Table. 2, ‘Class Type’ represent the type of cancer (B or M), 

where B represent benign and M represent malignant and their respective Precision, Recall, F1 Score and 

Accuracy. It also provides an average accuracy of each architecture on the basis of splatting procedures. It can 

be noted that the proposed framework gives higher accuracy in the classification of cancer cells in breast 

cytology images as compare to individual architectures. 

 

3.3. Comparative analysis of accuracy with other methods 

Similarly, a comparative analysis of the results obtained using the proposed framework with four well-

known methods is carried out to relates the strength of the proposed architecture as given in Table. 3. It can be 

observed from Table. 3 that the methods in [25– 28] give an accuracy of 92.63%, 90.0%, 97.0%, and 97.5% 

respectively, whereas, the results obtained using the proposed framework gives an accuracy of 97.52%, which is 

higher than all the four methods. These results show the strength in terms of accuracy of the pro-posed approach 

as compare to other similar methods. 

 

IV. CONCLUSION 
In this article, we proposed a novel deep learning framework for the detection and classification of 

breast cancer using the con-cept of transfer learning. In this framework, features are extracting from breast 

cytology images using three different CNN architec-tures (GoogLeNet, VGGNet, and ResNet) which are 

combined using the concept of transfer learning for improving the accuracy of clas-sification. Similarly, we also 

proposed the concept of data augmen-tation to increase the size of a data set to improve the efficiency of CNN 

structure. Finally, the performance of the proposed frame-work is compared with different CNN architectures 

independently and also compared with other existent methods. It has been ob-served that the proposed 

framework gives excellent results regard-ing accuracy without training from scratch which improves classi-

fication efficiency. In future, both hand-crafted features along with CNN features will be used to further improve 

the classification ac-curacy. 
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Table 2 

Splatting based comparative analysis of proposed framework with other CNN architecture. 

Classifier 

Training-

testing Class type Precision Recall F1 score 

Accurac

y 

Average 

Accuracy 

 data splitting       

        

GoogLeNet 90%–10% B 0.93 0.94 0.94 93.67% 93.22% 

  M 0.96 0.94 0.95   

 80%–20% B 0.93 0.93 0.93 93.00%  

  M 0.93 0.94 0.93   

https://doi.org/10.13039/501100001871
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 70%–30% B 0.96 0.9 0.93 93.00%  

  M 0.92 0.98 0.95   

VGGNet 90%–10% B 0.9 0.97 0.94 93.67% 94.00% 

  M 0.9 0.91 0.92   

 80%–20% B 0.97 0.96 0.95 96.00%  

  M 0.95 0.93 0.92   

 70%–30% B 0.91 0.92 0.94 92.33%  

  M 0.9 0.99 0.96   

ResNet 90%–10% B 0.97 0.98 0.99 98.00% 94.89% 

  M 0.99 0.98 0.99   

 80%–20% B 0.99 0.9 0.99 96.00%  

  M 0.9 0.98 0.99   

 70%–30% B 0.9 0.92 0.9 90.67%  

  M 0.91 0.98 0.99   

Proposed 

Framwork 90%–10% B 0.96 0.97 0.98 97.00% 97.67% 

  M 0.95 0.96 0.98   

 80%–20% B 0.97 0.99 0.97 97.67%  

  M 0.96 0.97 0.98   

 70%–30% B 0.98 0.98 0.99 98.33%  

  M 0.97 0.96 0.98   

        

 

Table 3 

 

Comparative Analysis with other 

Methods. 

Methods 

Accurac

y 

  

Nguyen [25] 92.63% 

Awan [26] 90.00% 

Kensert [27] 97.00% 

Vesal [28] 97.50% 

Proposed 

Framework 97.52% 
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